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Abstract We consider the general response theory recently proposed by Ruelle for describ-
ing the impact of small perturbations to the non-equilibrium steady states resulting from
Axiom A dynamical systems. We show that the causality of the response functions entails
the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding
susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly
observable susceptibilities obey K-K relations. Specific results are provided for the case of
arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and
the establishment of sum rules connecting the asymptotic behavior of the harmonic gener-
ation susceptibility to the short-time response of the perturbed system. These results set in
a more general theoretical framework previous findings obtained for optical systems and
simple mechanical models, and shed light on the very general impact of considering the
principle of causality for testing self-consistency: the described dispersion relations consti-
tute unavoidable benchmarks that any experimental and model generated dataset must obey.
The theory exposed in the present paper is dual to the time-dependent theory of perturbations
to equilibrium states and to non-equilibrium steady states, and has in principle similar range
of applicability and limitations. In order to connect the equilibrium and the non equilibrium
steady state case, we show how to rewrite the classical response theory by Kubo so that
response functions formally identical to those proposed by Ruelle, apart from the measure
involved in the phase space integration, are obtained. These results, taking into account the
chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including
climate research. In particular, whereas the fluctuation-dissipation theorem does not work
for non-equilibrium systems, because of the non-equivalence between internal and external
fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory
of climate change.
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1 Introduction

The analysis of how systems respond to external perturbations to their steady state con-
stitutes one of the crucial subjects of investigation in the physical and mathematical sci-
ences. In the case of physical systems near equilibrium, the powerful approach introduced
by Kubo [1], based on the generalization up to any order of nonlinearity of the formalism
of the Green function, allows for expressing the change in the statistical properties of a
general observable due to the introduction of a perturbation in terms of expectation values
of suitably defined quantities evaluated at the unperturbed state [2]. These results have had
huge impacts on statistical mechanics and have allowed detailed treatment of several and
rather diverse processes, including, e.g. the interaction of radiation with condensed matter.
Recently, Ruelle [3, 4] has extended some of the investigations by Kubo to a wide class of
systems far from equilibrium, and introduced a perturbative approach for computing the re-
sponse of systems driven away by a small external forcing from their non-equilibrium steady
states. More precisely, the results by Ruelle consider perturbations to autonomous Axiom A
systems, defined in a compact manifold, possessing a chaotic, mixing dynamics, and asso-
ciated to an invariant ergodic Sinai-Ruelle-Bown (SRB) measure [5, 6], which is shown to
be differentiable [7, 8]. In recent investigations, the crucial point of defining differentiability
of the SRB measure has been tackled in greater generality [9–11], including also the case
of non-uniform hyperbolic attractors [12–14], so that extending the theory to a more gen-
eral dynamical systems than Axiom A systems may prove a feasible task. Nevertheless, we
remind that, the—mathematically speaking, special—case of Axiom A systems amounts
to being of general physical interest, if one accepts the chaotic hypothesis by Gallavotti
and Cohen [15, 16] which states that, for the purpose of computing macroscopic quanti-
ties, many-particle systems behave as though they were dynamical systems with transitive
Axiom-A global attractors.

In particular, Ruelle [3, 4] has shown that, in analogy to what found by Kubo, at all
orders of perturbative expansion, the effect of the forcing on the expectation value of a gen-
eral observable can be expressed in terms of averages of quantities performed at the non-
equilibrium steady state, i.e. obtained by integrating over the unperturbed SRB measure.
Moreover, in the case of linear response, it is shown that it is possible to define formally
a susceptibility function, obtained as the Fourier Transform of the linear Green function of
the system, and to prove that such susceptibility, basically as a result of the causality prin-
ciple, obeys Kramers-Kronig (K-K) relations [17, 18], just as in Kubo framework. The K-K
relations say that the real and imaginary part of the linear susceptibility are fundamentally
connected, each one being the Hilbert transform of the other one. Hence, these integral prop-
erties provide unavoidable constraints for checking the self-consistency of experimental or
model-generated data. Furthermore, by applying the K-K relations, it is possible to perform
the so-called inversion of data, i.e. to acquire knowledge on the real part by measurements
of the imaginary part over the whole spectrum, or vice versa.

Nevertheless, in spite of such important formal analogies, it is important to stress some
qualitative differences of deep physical content between equilibrium and non-equilibrium
systems in the physical meaning of the linear response function. Whereas in systems close to
equilibrium there is basically equivalence between the natural fluctuations and the linear re-
sponse to external perturbations, as clarified by the fluctuation-dissipation theorem [19, 20],
in the considered non equilibrium systems such symmetry in broken, the mathematical rea-
son being that the SRB measure is smooth only along the unstable manifold. A more geo-
metrical view of this fact is that, whereas natural fluctuations of the system are restricted to
the unstable manifold, because, by definition, asymptotically there is no dynamics along the
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stable manifold, external forcings will cause almost always motions having components—of
exponentially decaying amplitude—out of the unstable manifold [3, 4]. For a discussion of
this point, see also [28]. It should also be noted that the non-equivalence of forced and free
fluctuations in chaotic systems was already pointed out and tackled in heuristic terms in the
late 70s by Lorenz [21] when considering the properties of the atmospheric system.

Whereas K-K relations for linear processes, thanks to their generality, have become a
basic textbook subject and standard tool in many different fields, such as acoustics, signal
processing, optics, statistical mechanics, condensed matter physics, material science, rela-
tively little attention has been paid to theoretical and experimental investigation of K-K rela-
tions and sum rules of the nonlinear susceptibilities, in spite of the ever increasing scientific
and technological relevance of nonlinear physical processes. Recently, several theoretical
and experimental results in this direction have been formulated in the context of analyzing
nonlinear processes of interaction of radiation with matter [22, 23].

The main goal of this paper is to analyze the formal properties on the nth order pertur-
bative response of Axiom A, non equilibrium steady state systems to external forcings. In
particular, we develop a theory of generalized K-K relations that extend, on one side, the
results on the linear case given by Ruelle [3] for this class of systems, and on the other side,
what obtained for nonlinear processes in electronic systems close to equilibrium [22, 23]
and in simple yet prototypical mechanical systems [26]. Special attention is paid to the
case of nonlinear susceptibilities describing processes responsible for harmonic generation,
whose properties are such that a rather extensive set of important constraints—including sum
rules—can be deduced. We stress that also in the nonlinear case K-K relations constitute un-
avoidable benchmarks that any experimental and model generated dataset must obey. K-K
relations may prove, as discussed later, useful tools for defining a theory of climate change,
because they apply also for systems where the fluctuation-dissipation theorem is not verified.

Our paper is structured as follows. In Sect. 2, we introduce the properties of the general
nth order susceptibility, resulting as Fourier transform of the nth perturbative order response
function of the system. In Sect. 3, we present an extension of the theory of nonlinear K-K
relations to the dynamical systems considered by Ruelle, showing which class of nonlinear
susceptibilities obey K-K relations and deducing rigorous results in the case of harmonic
generation processes. In Sect. 4, we discuss our results, present our conclusions and per-
spectives for future investigations. Two appendices are also included. In Appendix A we
show how the Kubo theory can be formally reconciled with the results by Ruelle, so that the
results presented in this work can be applied also for general equilibrium systems. A discus-
sion of the relevance for climate studies of the response theory for Axiom-A systems and of
the specific results described in this study is given in Appendix B.

2 Linear and Nonlinear Response of Perturbed Non-Equilibrium Steady States

We consider an autonomous Axiom A flow ẋ = F(x) defined in a compact manifold, such
that x(t) = f tx, with x = x(0). The flow is assumed to possess a chaotic, mixing dynamic,
and to be associated to an invariant ergodic SRB measure ρSRB(dx), such that for any mea-
surable observable �(x) the ensemble average is equal to the time average:

〈�〉0 =
∫

ρSRB(dx)�(x) = lim
T →∞

1

T

∫ T

0
dt�(f tx) = lim

T →∞

∫
dx�(f T x) (1)

for almost every initial condition x according to the Lebesgue measure dx; the last equality
holds for the special case of mixing dynamics. The SRB measure is usually singular, but
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smooth along the directions of the unstable manifold [5, 6, 27]. Ruelle has shown that for
this class of dynamical systems (as well as for the corresponding discrete-time diffeomor-
phisms) it is possible to differentiate the SRB states [7, 8] when the flow is perturbed by an
infinitesimal vector field in the following way:

ẋ = F(x) + e(t)X(x). (2)

Is then possible to express the perturbed expectation value of �(x) in terms of a perturbation
series:

〈�〉(t) = 〈�〉0 +
∞∑

n=1

〈�〉(n)(t), (3)

where, proposing a generalization of the formula proposed by Ruelle [4], which considered
purely periodic perturbations, the nth term can be expressed as a n-uple convolution integral
of the nth order Green function with n terms each representing the suitably delayed time
modulation of the perturbative vector field:

〈�〉(n)(t) =
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
dσ1dσ2 · · ·dσnG

(n)(σ1, . . . , σn)e(t −σ1)e(t −σ2) · · · e(t −σn).

(4)
The nth order Green function G(n)(σ1, . . . , σn) is causal, i.e. its value is zero if any of the
argument is non positive, and can be expressed as time dependent expectation value of an
observable evaluated over the unperturbed SRB measure:

G(n)(σ1, . . . , σn) =
∫

ρSRB(dx)�(σ1)�(σ2 − σ1) · · ·�(σn − σn−1)

×��(σn − σn−1) · · ·��(σ2 − σ1)��(σ1)�(x), (5)

where � is the usual Heaviside function, �(•) = X(x)∇(•) describes the effect of the per-
turbative vector field, and � induces the time evolution along the unperturbed vector field
so that �(τ)A(x) = A(x(τ)) for any observable A. The n = 1 term describes the linear re-
sponse of the system to the perturbation field [3], and, thanks to the superposition principle,
can be derived also by using the method of impulse perturbation [28]. In Appendix A we
show that it is possible to rephrase the Kubo response theory [1] in such a way to obtain a
formula that perfectly matches the formula presented in (5), provided that the equilibrium
canonical distribution is used instead of the SRB measure ρSRB(dx).

2.1 Response of the System in the Frequency Domain

If we compute the Fourier transform of the nth order perturbation to the expectation value
〈�〉n(t) defined in (4) we obtain:

〈�〉(n)(ω) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
dω1 · · ·dωnχ

(n) (ω1, . . . ,ωn) e(ω1) · · · e(ωn) × δ

(
ω −

n∑
l=1

ωl

)
,

(6)
where the Dirac δ guarantees that the sum of the arguments of the Fourier transforms of the
time modulation functions equals the argument of the Fourier transform of 〈�〉n(t), whereas
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the susceptibility function is defined as

χ(n) (ω1, . . . ,ωn) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
dt1 · · ·dtnG

(n) (t1, . . . , tn) exp

⎡
⎣i

n∑
j=1

ωj tj

⎤
⎦ . (7)

These results make sense if the Green function is Lebesgue-integrable or at least—when
distributions are considered—if it not exponentially increasing. In the linear case, Ruelle
[3, 4] has shown that integrability is ensured by proving that both the contributions asso-
ciated to terms resulting from projections of the perturbative vector field on the unstable
and stable manifolds converge, because of the distinct processes of mixing and of expo-
nential contraction, respectively. In the nonlinear n > 1 case, we can heuristically use the
same arguments—as well as taking into account that in the classical equilibrium case [1]
the higher order correlations are typically much weaker and with faster decrease—to accept
expressions (7).

Assuming that, without serious loss of generality, the function e(t) can be expressed as:

e(t) =
m∑

k=1

eωj
exp[−iωj t] + e−ωj

exp[iωj t] (8)

with eωj
= {e−ωj

}∗ ({Z}∗ indicating the complex conjugate of Z), we derive that each fre-
quency component in (6) can be written as:

〈�〉(n)(ω) =
∑
{ω� }

〈�〉(n)
(ω�) δ (ω − ω�) , (9)

where we are summing over all the possible distinct values {ω�} of the possible sums of n

among the 2m frequencies in the spectrum of e(t), which basically formalizes the process
of frequency mixing. Of course, in the linear n = 1 case, no mixing occurs and outputs can

be observed at the same frequencies as the input. In general, each term 〈�〉(n)
(ω�) is given

by the following sum:

〈�〉(n)
(ω�) =

∑
∑

ωkj
=ω�

χ(n)(ωk1 , . . . ,ωkn)eωk1
· · · eωkn

, (10)

where the sum of the arguments of all the contributing susceptibility functions is ω� . Note

that, from an experimental point of view, we can measure 〈�〉(n)
(ω�) by analyzing in the

frequency domain the perturbed output of the system, whereas disentangling the various
terms contributing to the summation in (10) is rather hard. Again, this problem is not present
in the linear case.

3 Generalized Kramers-Kronig Relations

3.1 Basic Results

Once we are granted that at every order n the response on the system 〈�〉(n)(t) is written
as a convolution integral having as Kernel a causal Green function G(n)(σ1, . . . , σn), and
assuming that the suitable integrability conditions are obeyed, we are in the condition of
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writing generalized dispersion relations for the nth order susceptibility presented in (7),
along the lines of what developed in the context of optics in [22, 23]. Therefore, we can
apply Titchmarsch’s theorem [17, 18, 22, 23] separately to each variable σi , 1 ≤ i ≤ n of
G(n)(σ1, . . . , σn) and deduce that χ(n) (ω1, . . . ,ωn) is holomorphic in the upper complex
plane of each variable ωi , 1 ≤ i ≤ n. If we consider the first argument ω1 of the nonlinear
susceptibility function (7), the following dispersion relation holds

P
∫ ∞

−∞
dω′

1

χ(n)(ω′
1, . . . ,ω

′
n)

ω′
1 − ω1

= iπχ(ω1, . . . ,ω
′
n), (11)

where P indicates that integration is performed in principal part. Repeating the same proce-
dure for all the remaining n − 1 frequency variables, we obtain

P
∫ ∞

−∞
· · ·

∫ ∞

−∞
dω′

1 · · ·dω′
n

χ(n)(ω′
1, . . . ,ω

′
n)

(ω′
1 − ω1) · · · (ω′

n − ωn)
= (iπ)nχ(ω1, . . . ,ωn), (12)

which extends to all orders the linear K-K relations already described by Ruelle [3]. K-K
relations constitute self-consistency constraints that must be obeyed and allow for recon-
structing the real part of the response from the imaginary part, or vice-versa. The princi-
ple of causality of the response function is reflected mathematically in the validity of the
K-K relations presented in (12). Note that, as discussed by Peiponen [24, 25], the disper-
sion relations (11)–(12) apply also for the functions [χ(n)(ω1, . . . ,ωn)]m, for integer values
m ≥ 1.

This implies that the generality of these dispersion relation goes beyond not only the
distinction between classical and quantum equilibrium system, as discussed in [22, 23], but
also beyond the distinction between equilibrium and non-equilibrium systems.

3.2 A New Definition of Dispersion Relations

The dispersion relations (11) and (12) may be thought of being of doubtful interest for actual

applications, since we can typically have access to quantities like 〈�〉(n)
(ω�), which results

from a linear combination of, in general, more than one different susceptibility functions, as
shown in (10). Moreover, most of the physically relevant nonlinear phenomena are described
by nonlinear susceptibilities where all or part of the frequency variables are mutually depen-
dent, such in the case of nth order harmonic generation at frequency nω0 in the presence of a
perturbation having a monochromatic modulation function e(t) = exp[−iω0t] + exp[iω0t].
Therefore, we may understand that a more flexible theory is needed in order to provide the
effectively relevant dispersion relations for nonlinear phenomena.

We then take the following point of view. In a realistic experimental setting only the
frequency of one of the monochromatic components described in (8) is changed. Since in
the nonlinear setting we have frequency mixing, changing the frequency of one of the com-

ponents of the forcing will change differently each of the terms 〈�〉(n)
(ω�), depending on

whether none, one or more than one arguments of the contributing nonlinear susceptibility
functions (see (10)) are varied. Therefore, when considering the nth order nonlinear process,
a meaningful dispersion relation should involve a line integral in the space of the frequency
variables, which entails the choice of a one-dimensional space embedded in a n-dimensional
space. Each component j of the line in R

n can be parameterized as follows:

ωj = vj s + wj , 1 ≤ j ≤ n, (13)
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where the parameter s ∈ R, the vector �v ∈ R
n of its coefficients describes the direction of the

line, and the vector �w ∈ R
n determines �ω(0). Therefore, each parameterization corresponds

to a specific class of nonlinear processes. Since we know that χ(n)(ω1, . . . ,ωn) is holomor-
phic in the upper complex plane of each variable ωi , 1 ≤ i ≤ n, we have that the extension
for complex values of s of the function:

χ(n)(s) = χ(n) (v1s + w1, . . . , vns + wn)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
dt1 · · ·dtnG

(n) (t1, . . . , tn) exp

⎡
⎣is

n∑
j=1

vj tj + i
n∑

j=1

wj tj

⎤
⎦ (14)

is holomorphic in the upper complex s plane if all the components of vector �v are non-
negative. This construction has been first proposed in the context of nonlinear optics in [29],
albeit using a more cumbersome proof. Hence, by applying the Titchmarsch theorem, we
deduce that for all m ≥ 1 the following integral relation holds for the susceptibility defined
in (14):

iπ[χ(n)(s)]m = P
∫ ∞

−∞

[χ(n)(s ′)]m
s ′ − s

ds ′, (15)

which, when the real and imaginary part of the nonlinear susceptibility are considered, re-
sults into:

Re{[χ(n)(s)]m} = 1

π
P

∫ ∞

−∞

Im{[χ(n)(s ′)]m}
s ′ − s

ds ′, (16)

Im{[χ(n)(s)]m} = − 1

π
P

∫ ∞

−∞

Re{[χ(n)(s ′)]m}
s ′ − s

ds ′. (17)

The condition on the sign of the directional vectors of the line in R
n implies that only one

particular class of nonlinear susceptibilities possess the holomorphic properties required to
obey the dispersion relations (16). Hence, causality is not a sufficient condition for the ex-
istence of K-K relations between the real and imaginary part of a general nonlinear suscep-
tibility function, if its arguments are mutually dependent. We stress that, instead, causality
implies that (12) holds.

3.3 Harmonic generation processes

3.3.1 Kramers-Kronig Relations

In order to clarify the results presented in the previous sections, and show how they can be
used for analyzing actual data, we concentrate on the simplified setting of a single mono-
chromatic perturbation field such that e(t) = exp[−iω0t] + exp[iω0t]. In this case, at each
order n, ω� = ±(2j + 1)ω0, with j = 0, . . . , (n − 1)/2 if n is odd and ω� = ±2jω0, with
j = 0, . . . , n/2 if n is even. Note that for even orders there is always a static response, which,
in the optical literature, is known as optical rectification [23]. If we focus, e.g., on the third
order of perturbation and consider only the positive frequencies, we have that the observable
signal at frequency ω0, which constitutes the first correction to the linear response, can be
expressed as:

〈φ〉(3)
(ω0) = χ(3)(−ω0,ω0,ω0) + χ(3)(ω0,−ω0,ω0) + χ(3)(ω0,ω0,−ω0); (18)
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whereas the observable signal responsible for the third harmonic generation is:

〈φ〉(3)
(3ω0) = χ(3)(ω0,ω0,ω0). (19)

If we change the frequency ω0 of the perturbation field and study how the output varies,
it is clear that for all three terms on the right hand side of (18) the vector �v of the
s-parameterization proposed in (13) has one negative component, whereas �v = (1,1,1) (and
�w = (0,0,0)) for the only term responsible for harmonic generation in (19). This implies
that, when analyzing the first nonlinear correction to the linear response at frequency ω0, we
cannot expect that K-K relations apply, since poles may well be present in the upper complex
plane of the s = ω0 variable [30]. In this case, different signal processing techniques, such
as the Maximum Entropy Method, have to be adopted [23]. Therefore, the condition on the
sign of the �v components allows for determining when K-K relations cannot be applied. On
the contrary, we are granted that the susceptibility describing the third harmonic nonlinear
response obeys K-K relation. It is clear that the same applies at all orders n, and also it can

be easily shown that the only contribution to the observable 〈φ〉(n)
(nω0) is χ(n)(ω0, . . . ,ω0).

At every order n, we have that χ(n)(−ω1, . . . ,−ωn) = {χ(n)(ω1, . . . ,ωn)}∗, because
〈�〉(n)(t) and e(t) are real. It is easy to show that the following relation holds for all values
of m ≥ 1:

[χ(n)(−ω1, . . . ,−ωn)]m = {[χ(n)(ω1, . . . ,ωn)]m}∗. (20)

We then derive that at all orders n ≥ 1 and for all integer m ≥ 1:

−π

2
Im{[χ(n) (ω0, . . . ,ω0)]m} = ω0P

∫ ∞

0
dω′

0

Re{[χ(n)(ω′
0, . . . ,ω

′
0)]m}

(ω′
0

2 − ω2
0)

, (21)

π

2
Re{[χ(n) (ω0, . . . ,ω0)]m} = P

∫ ∞

0
dω′

0

ω′
0Im{[χ(n)(ω′

0, . . . ,ω
′
0)]m}

(ω′
0

2 − ω2
0)

(22)

which, albeit in a different perspective from what shown in (12), generalize the linear K-K
relations at all orders. Note that, along the lines of the discussion on (18), we have that in
general the (n + 2k)th order (k ≥ 1) response gives contributions at frequency nω0 which
do not obey K-K relations. Nevertheless, in the weak field limit, we may neglect these
higher-order contributions, whose relative weight with respect to the leading term is at least
quadratic in the perturbation field. Note that, if we consider limω0→0 of (22) in the linear
case and assume that the limit converges, we obtain the following expression for the linear
static response of the system:

Re{[χ(1) (0)]m} = [Re{χ(1) (0)}]m = 2

π
P

∫ ∞

0
dω′

0

Im{[χ(1)(ω′
0)]m}

ω′
0

; (23)

the finiteness of the integral is consistent with the fact that, by symmetry,
Im{[χ(1)(ω0 = 0)]m} = 0, which must be obeyed at all values m ≥ 1. Note that, even if
several monochromatic forcings are present, (21)–(22) still apply, since no other frequency
components are involved.

A detailed verification of K-K relations for the frequency components of the linear re-
sponse to an external perturbation has been performed in the case of Lorenz system [31].
It is somewhat surprising to observe how the qualitative features of the detected (and re-
constructed) susceptibility are similar to what results from a simple oscillator model: the
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imaginary part has a strong peak for a resonance of system (even if in this case there is
no deterministic natural frequency for the system), which matches the dispersive structure
found for the real part of the susceptibility. Another minor spectral feature is observed, and
again, following the spectroscopic paradigm, a peak in the imaginary part is associated to
a dispersive structure in the real part. Note also that the Lorenz system is far from being
Axiom A, which points at the fact that a wide range of applicability for these relations is
still to be explored.

3.3.2 Asymptotic Properties and Sum Rules

The short time behavior of the nth order Green function determines the asymptotic behavior
of the nth order harmonic susceptibility at frequency nω0. We perform the following variable
change

tj =
j∑

k=1

τk, (24)

assume that G(n)(t1(τ1), . . . , tn(τ1, . . . , τn)) is smooth for all its arguments {τj } in 0, and we
define β as the smallest sum of exponents of (τ1, . . . , τn) such that there is a non-vanishing
monomial Mβ(τ1, . . . , τn) in the Taylor expansion G(n)(t1(τ1), . . . , tn(τ1, . . . , τn)). It is pos-
sible to show that [22, 23, 32]:

lim
ω0→∞ω

β+n

0 χ(n)(ω0, . . . ,ω0) = α ∈ C \ {0}, (25)

which implies that the asymptotic behavior of χ(n)(ω0, . . . ,ω0) is at least as fast as ω−n
0 .

Moreover, since Re{χ(n)(ω0, . . . ,ω0)} and Im{χ(n)(ω0, . . . ,ω0)} are even and odd function
of ω0, respectively, if the real part determines the asymptotic behavior, we derive that β +
n = 2γ and α = αR ∈ R, otherwise β + n = 2γ − 1 and α = iαI , αI ∈ R. We see that
dispersion theory provides us with indirect information about the short time behavior of the
Green function. Furthermore, the knowledge of the asymptotic behavior allows a further
generalization of what presented in (21)–(22). In fact, we have that all the (independent)
functions ω2p[χ(n)(ω0, . . . ,ω0)]m are holomorphic in the upper complex plane of ω0 and
obey the following set of generalized K-K relations:

−π

2
ω0

2p−1Im{[χ(n)(ω0, . . . ,ω0)]m} = P
∫ ∞

0
dω′

0

ω′
0

2pRe{[χ(n)(ω′
0, . . . ,ω

′
0)]m}

((ω′
0

2 − ω2
0)

, (26)

π

2
ω0

2pRe{[χ(n)(ω0, . . . ,ω0)]m} = P
∫ ∞

0
dω′

0

ω′
0

2p+1Im{[χ(n)(ω′
0, . . . ,ω

′
0)]m}

(ω′
0

2 − ω2
0)

(27)

with p = 0, . . . ,mγ − 1 if β + n = 2γ , and p = 0, . . . , int(mγ − (m + 1)/2) (with int(x)

indicating the integer part of x) if β + n = 2γ − 1.
In the case β + n = 2γ , comparing the asymptotic behavior given in (25) with those

obtained by applying the superconvergence theorem [33] to the general K-K relations
(26)–(27), we derive the following set of general sum rules

∫ ∞

0
ω0

′2pRe{[χ(n)(ω′
0, . . . ,ω

′
0)]m}dω′ = 0, 0 ≤ p ≤ mγ − 1, (28)

∫ ∞

0
ω0

′2p+1Im{[χ(n)(ω′
0, . . . ,ω

′
0)]m}dω′ = 0, 0 ≤ p ≤ mγ − 2, (29)
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∫ ∞

0
ω0

′2p+1Im{[χ(n)(ω′
0, . . . ,ω

′
0)]m}dω′ = −αm

R

π

2
, p = mγ − 1. (30)

All the moments of the nth order harmonic generation susceptibility vanish except that of or-
der 2mγ − 1 of the imaginary part. This latter sum rule creates a conceptual bridge between
the measurements of the imaginary part of the susceptibility under examination through-
out the spectrum to the short term behavior of the nth order Green function. These results
hold for all values of m ≥ 1. These results generalize what obtained for general optical sys-
tems near equilibrium [32] and for simple mechanical forced and damped oscillators [26];
in these systems the real part of the susceptibility determines the asymptotic behavior for
large values of ω0. Note that both the generalized K-K relations (26)–(27) and the sum rules
(28)–(30) have been verified in detail on experimental data in the case of optical processes
near equilibrium for third harmonic generation processes in polymers [34].

In the case β + n = 2γ − 1, by following the same strategy adopted for deriving
(28)–(30), and restricting ourselves to the case m = 1 (for higher values of m the results
are quite cumbersome and differ between the case of even and odd values of m) we derive
the following:

∫ ∞

0
ω0

′2pRe{χ(n)(ω′
0, . . . ,ω

′
0)}dω′ = 0, 0 ≤ p ≤ γ − 2, (31)

∫ ∞

0
ω0

′2p+1Im{χ(n)(ω′
0, . . . ,ω

′
0)}dω′ = 0, 0 ≤ p ≤ γ − 2, (32)

∫ ∞

0
ω0

′2pRe{χ(n)(ω′
0, . . . ,ω

′
0)}dω′ = αI

π

2
, p = γ − 1. (33)

Therefore, in this case the only non-vanishing moment is the that of order 2γ − 2 of the
real part, which is connected to the short-time behavior of the nth order Green function.
As a technical detail, we note that from the K-K relation entailing as integrand the highest
moment of the imaginary part it is not possible to derive a sum rule similar to (30) because
the superconvergence theorem cannot be applied, as the numerator does not have an asymp-
totic behavior strictly faster than ω′

0
−1. Up to the knowledge of the author, the sum rules

(31)–(33) for systems whose out-of-phase response is asymptotically dominant have never
been presented in the literature.

All the K-K relations and sum rules presented in this section constitute a rather extensive
set of stringent integral constraints that must be obeyed by experimental data and model
simulations.

4 Summary and Conclusions

In this paper we have considered the general response function G(n)(σ1, . . . , σn) recently
proposed by Ruelle [3, 4] for describing the impact of small time-dependent forcings to
the non-equilibrium steady states resulting from Axiom A dynamical systems, which, when
taking into account the chaotic hypothesis by Gallavotti and Cohen [15, 16], are of general
physical interest. At all orders of perturbative expansion, the effect of the forcing on the
expectation value of a general observable can be expressed in terms of averages of quantities
performed at non-equilibrium steady state.

Since, at every order of perturbation, the response function is causal, it is possible to
write a set of K-K relations for the corresponding susceptibility, defined as the multivariable
Fourier Transform of the response function χ(n)(ω1, . . . ,ωn). These dispersion relations are
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of little applicability because they cannot be used to effectively analyze the output signal,
which is the change in the expectation value of the considered observable.

In practice, it is interesting to consider the case of one or more monochromatic forc-
ings and to be in the condition of analyzing what happens when the frequency of one of
them is changed. Since in the nonlinear setting of order n we have frequency mixing, such
frequency tuning will affect differently the various frequency components of the observed
output signal, depending on whether none, one or more than one arguments of the nonlinear
susceptibility functions responsible for the observed frequency components of the output are
varied. Therefore, following this approach, the dispersion relation becomes a parameterized
line integral in the n-dimensional space of frequency variables. K-K relations apply only for
special forms of parameterizations, which correspond to a specific family of susceptibility
functions. These results are system-independent and derive strictly from complex analysis.

Among the phenomena which can be treated using the K-K formalism, we concentrate
on the nth order process by which the system responds at frequency nω0 when forced by
a monochromatic vectorial field with angular frequency ω0. Such a process is described by
the harmonic generation susceptibility χ(n)(ω0, . . . ,ω0), which is holomorphic in the upper
complex ω0 plane and obeys K-K relations. For any given system, the asymptotic behavior
for large frequencies is shown to depend on the short-time response and to be of the form
ω

−2γ

0 if the dominating component is the real part, whereas, if the imaginary part dominates,
the susceptibility asymptotically decreases following a odd power law, of the form ω

−2γ+1
0 .

It is then proved that all functions ω2pχ(n)(ω0, . . . ,ω0) with p = 0, . . . , γ − 1 obey K-K
relations, so that more stringent, generalized constraints are established. Furthermore, using
symmetry arguments and the superconvergence theorem on the generalized K-K relations,
and comparing the results with the asymptotic behavior for large values of ω0, new sum
rules are obtained. We derive that all even moments of the real part and all odd moments of
the imaginary parts are null, except, in the case that the real (imaginary) part determines the
asymptotic behavior, for the highest converging odd (even) moment of the imaginary (real)
part of the susceptibility, which is directly related to the short time behavior of the system.
Furthermore, these results are also extended to the powers [χ(n)(ω0, . . . ,ω0)]m, m ≥ 1 of the
susceptibility, and additional constraints are derived. The obtained generalized K-K relations
and sum rules can be used to check any experimental data and approximate theory of linear
and nonlinear phenomena, because they are necessary constraints which have to be obeyed.

These results generalize and extend what obtained by Ruelle [3, 4] for Axiom A sys-
tems, set in a much more general theoretical framework previous findings obtained for near
equilibrium optical processes [22, 23] and simple yet prototypical mechanical oscillators
near equilibrium [26], and shed light on the generality of the constraints deriving from the
principle of causality both for equilibrium and non-equilibrium systems. Note that, far from
being a mathematical curiosity coming as a byproduct of Cauchy theory, it is through this
approach that the optical constants of most solids have been actually computed [23, 35, 36].
As discussed in [18, 22, 23], basically all K-K relations and sum rules can be rephrased,
after lengthy but straightforward calculations, in terms of absolute value and phase of the
susceptibility function, which in some cases may be of easier experimental observation.

It is somewhat surprising, and encouraging in the perspective of the theory here devel-
oped, to see that the linear susceptibility of the Lorenz system investigated in [31], albeit
non Axiom A and not even hyperbolic, obeys K-K relations. This may be related to the re-
cent results and conjectures that point at the possibility of generalizing the response theory
to wider classes of dynamical systems [9–14].

In order to clarify and complete the picture, in Appendix A we show that the functions
derived for non equilibrium steady states are formally equivalent, at all perturbative orders,
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to what obtained with the Kubo formalism for the response of systems close to equilibrium,
apart from the measure involved in the phase space integration. In the case of a system close
to equilibrium, the measure is the one describing the canonical distribution, whereas in the
setting analyzed by Ruelle, the SRB measure of the unperturbed flow is involved. Therefore,
all of the results presented in the paper apply, a fortiori, for systems close to equilibrium.

The response theory discussed here can have interesting implications for climate studies.
In fact, the possibility of defining a response function basically poses the problem of climate
change is well-defined context, and, when considering the procedures aimed at improving
climate models, justifies rigorously the procedures of tuning and adjusting the free parame-
ters. Furthermore, qualitative differences between different and widespread ensemble sim-
ulation practices can be interpreted in this context. Moreover, the non-equivalence of free
and forced fluctuations explains why many attempts of applying the fluctuation-dissipation
theorem in climate studies have basically failed. Instead, it may be that the general theory
of Kramers-Kronig relations described in this paper, which, in the case of non-equilibrium
system, is decoupled from the fluctuation-dissipation theorem, may provide a viable way of
defining a comprehensive self-consistent theory of climate change, ensured by the integral
relations connecting the in-phase and out of phase components of the response of the system
to external perturbations. This is discussed in some greater detail in Appendix B.

Along the conceptual line of the Titchmarsch theorem, which expresses the fundamental
equivalence between causality of the response function and analytic properties of its Fourier
Transform, we may say that the theory exposed here is the dual in the world of frequencies
to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium
steady states, and has basically the same range of applicability and the same limitations.
Therefore, it might be worthwhile to analyze K-K relations and sum rules for linear and
nonlinear susceptibility functions resulting from specific dynamical systems of interest for
the description of natural and social phenomena as well as of more abstract processes.

We conclude with some practical caveats. As well known, it is surely not trivial in prac-
tical terms to effectively verify the K-K relations and sum rules on experimental or model
generated data. One general problem is their integral formulation, which requires that data
are available on a rather extensive spectral range and with a reasonable resolution. This may
raise issue of computational costs and/or experimental set-up. The extrapolations in K-K
analysis can be a serious source of errors [36, 37]. Recently, King [38] presented an efficient
numerical approach to the evaluation of K-K relations, and singly and multiply subtractive
K-K relations have been proposed in order to relax the limitations caused by finite-range
data [39, 40]. It should be noted that K-K relations for higher-order susceptibilities are,
somewhat counter-intuitively, sometimes easier to verify than the linear K-K relations, be-
cause they have typically a much faster asymptotic decrease. Whereas we have shown that at
all orders large families of K-K relations hold for the various moments and various powers
of the susceptibility functions, it should be expected that they do not converge at the same
rate when data of finite precisions coming from a finite spectral range are used. See the
discussion in [22, 23]. Furthermore, when considering chaotic systems, further problems in
signal detection of the system response at specific frequencies are related to the presence
of a continuous spectrum in the background; this latter issue may become more serious
when nonlinear processes are examined and the observed monochromatic signal is weaker.
Nevertheless, along the lines of Reick [31], these problems may result to be manageable. En-
couraging results, in excellent agreement with the theoretical predictions, are being obtained
by the author on specific dynamical systems and will be presented elsewhere.
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Appendix A: Reconciling Kubo’s and Ruelle’s General Perturbative
Response Functions

In this appendix we show how to reconcile formally the response function of general systems
characterized by non-equilibrium steady state (see (5)) with the response function of systems
close to equilibrium derived with Kubo’s theory [1]. Therefore, all the results presented in
the paper apply, a fortiori, for systems close to equilibrium.

We consider a system of N degrees of freedom described by the canonical coordi-
nates q = (q1, . . . , qN) and p = (p1, . . . , pN) and evolving under the action of the Hamil-
tonian operator H(q,p) = H0(q,p)+h(q,p, t), composed of the unperturbed Hamiltonian
H0(q,p) plus the time dependent perturbation (weak) Hamiltonian expressed in the form
h(q,p, t) = −e(t)B(q,p) [2]. The evolution equation of the system can then be written as:

ẋ = F(x) + e(t)X(x), (A.1)

where x = (q,p); F(x) = �∇H(x), X(x) = −�∇B(x), with � indicating the symplectic
matrix. We assume that, if the perturbation is set to 0, the expectation value of any observable
� can be expressed as the following:

〈�〉0 =
∫

dxρ0(x)�(x) =
∫

ρ0(dx)�(x), (A.2)

where integration is performed in the phase space of the system, and the canonical distri-
bution, which is absolutely continuous with respect to the Lebesgue measure of the phase
space, is defined as usual as:

ρ0(dx) = ρ0(x)dx = exp [−H0(x)/kT ]∫
d� exp [−H0(x)/kT ]dx = exp [−H0(x)/kT ]∫

ρ0(dx)
dx. (A.3)

Following the perturbative approach introduced by Kubo [1], we have that, for small pertur-
bations, the expectation value of � at time t can be written as:

〈�〉(t) = 〈�〉0 +
∞∑

n=1

〈�〉(n)(t), (A.4)

where the terms under summation describe the non-equilibrium properties—for a system
which is close to equilibrium—at all orders of perturbation; in particular the n = 1 term
provides information on the linear response of the system. The perturbative terms can be
expressed as follows [1, 2]:

〈�〉(n)(t) =
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
dσ1dσ2 · · ·dσn

× �(σ1)�(σ2 − σ1) · · ·�(σn − σn−1)f (t − σ1)f (t − σ2) · · ·f (t − σn)

× 〈[B(x), . . . , [B(x(σn − σ2)), . . . , [B(x(σn − σ1)),�(x(σn))]] , . . .]〉0

=
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
dσ1dσ2 · · ·dσnG

(n)(σ1, . . . , σn)e(t − σ1)e(t − σ2) · · · e(t − σn)

(A.5)

where the time evolution of the observables B and � is due to the unperturbed Hamil-
tonian H0. The non-equilibrium response is expressed as a convolution integral where the
Kernel, which is the nth order Green function G(n)(σ1, . . . , σn) is causal.
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Note that in the quantum case, where we deal with N -particles Hilbert space and ob-
servables are replaced by operators, the Kernel operator is formally obtained by simply
substituting each Poisson brackets [•,•] with 1/(i�) times the commutator {•,•}, and by
redefining the expectation value at equilibrium of a generic operator P as follows:

〈P 〉0 =
∑

a〈a|P |a〉 exp [−Ea/kT ]∑
b exp [−Eb/kT ] , (A.6)

where |a〉 is the eigenstate with eigenvalue Ea of the Hamiltonian operator H0.
Since the following trivial identity holds:

[B(x),•] = X(x)∇(•) = �(•) (A.7)

and since, by definition, the evolution of any observable A driven by the unperturbed Hamil-
tonian H0 can be formally represented as follows:

A(x(τ)) = exp(iτL)A(x) = �(τ)A(x), (A.8)

where iLA(x) = [A(x),H0(x)], the nth order Green function can be formally written in the
following compact and form:

G(n)(σ1, . . . , σn) =
∫

ρ0(dx)��(σn − σn−1) · · ·��(σ2 − σ1)��(σ1)�(x), (A.9)

which is fully equivalent to the formula shown in (5), provided that the measure describing
the equilibrium canonical distribution is substituted with the general SRB measure.

Appendix B: Response Theory for Non-Equilibrium Steady States
and Climate Research

When adopting the chaotic hypothesis, the possibility of defining a response function of a
perturbed non-equilibrium steady state and its actual properties seem to have very interesting
impacts in climate studies. On one side, this creates a context where the problem of climate
change is well-posed at mathematical level and where, when considering the procedures
aimed at improving climate models, the tuning and adjustment of the free parameters—at
least locally—may be considered as a well-defined operation devoid of catastrophic impacts
on the statistical properties of the system. On the other hand, straightforward applications of
fluctuation-dissipation theorem [41, 42], or the idea that climate change signals project on
the natural modes of climate variability [43] seem inadequate, as discussed in [44]. Instead,
it seems that the theory of Kramers-Kronig relations described in this paper may provide a
viable way of defining a comprehensive self-consistent theory of climate change, ensured by
the integral relations connecting the in-phase and our of phase components of the response
of the system to external perturbations. As an example, we may interpret (23) as the fact
that the static response function—measuring climate sensitivity—can be related to the out-
of-phase response to same forcing at all frequencies, at least in first approximation.

The concepts behind the Ruelle response theory also clarify the meaning of some com-
mon ensemble simulation practices, which are widely adopted by the climate modelling
community with the goal of estimating the uncertainty on the statistical properties of the
model outputs, when a specific set of observables is considered [45–47]. Three different
strategies, which are nevertheless more and more hybridized, can be pointed out:
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• Each simulation is performed with the same climate model, but starting from slightly
different initial state;

• Each simulation is performed with the same climate model, but with slightly different
values of some key uncertain parameters characterizing the global climatic properties;

• Each simulation is performed with a different climate model (multi-model ensemble).

Under the chaotic hypothesis, the first procedure seems useful, since a more detailed ex-
ploration of the phase space of the system, with a better sampling—on a finite time—of the
attractor of the model. The significance of the second procedure seem to be reinforced by the
response theory for non equilibrium steady states, because in this case the variously tuned
models basically explore parameterically deformed ergodic measures, and the macroscopic
sensitivity of the model is thus explored. As for the third procedure, whereas it surely allows
for climate model intercomparison, aggregating information from rather different attractors
seems ill-defined.
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